
MODIS
Software Development

 Standards and Guidelines

F C S

SG
S B

R

April 21, 1997

SDST-022

Revision C

MODIS Software Development
Standards and Guidelines

Reviewed By:

__
James Firestone, General Sciences Corporation/SAIC Date
SDST STIG Lead

__
Jenny Glenn, General Sciences Corporation/SAIC Date
SDST Systems Analyst

__
Barbara Putney, GSFC/Code 920 Date
MODIS Systems Engineer

__
Catherine Harnden, GSFC/Code 920 Date
MODIS SDST Deputy Manager

__
Laurie Schneider, General Sciences Corporation/SAIC Date
SDST R&QA Manager

__
Tom Piper, General Sciences Corporation/SAIC Date
MODIS Task Leader

Approved By:

__
Edward J. Masuoka, GSFC/Code 920 Date
MODIS SDST Manager

Change Record Page

This document is baselined and has been placed under Configuration Control. Any
changes to this document will need the approval of the Configuration Control Board.

Document Title: MODIS Software Development Standards and Guidelines

Document Date: February 15, 1995

Issue Date Page Affected Description

Original 2/15/1995 All Baseline Review

Change 1 10/25/95 2 - 9, 11, 13 - 16 CCRs: 026, 049

Revision A 3/18/96 6 (para. 5.1.3) CCR 125

Change 1 4/26/96 3, 7 CCRs: 131, 133

Change 2 7/13/96 17 CCRs: 128, 129, 152

Revision B 8/13/96 6,7, 8, 9, 11,12, 14,
15, 17

CCR 179

Change 1 11/18/96 14, 16 CCR 254

Revision C 4/21/97 All CCRS: 287, 290

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 i

MODIS Software Development
Standards and Guidelines

Table of Contents

1. INTRODUCTION ..1
1.1 Purpose and Scope..1
1.2 Relationship to Project Standards..1
1.3 Waivers..1
1.4 Document Status and Updates...1

2. SCF STANDARDS AND GUIDELINES...3

3. DOCUMENTATION STANDARDS..3

4. PROGRAMMING STANDARDS AND GUIDELINES................................3
4.1 Commenting Standards...3

4.1.1 Module Identification Standard...3
4.1.2 Commenting Guidelines..7

5. C CODING STANDARDS...7
5.1 General Standards..7
5.2 Structuring/Style..7
5.3 Bit Manipulation...8
5.4 Functions...8

6. C CODING GUIDELINES...8
6.1 General Guidelines...8
6.2 Declarations..8
6.3 Structuring/Style..9
6.4 Operators...10
6.5 Bit Manipulation...10
6.6 Error Checking...10

7. FORTRAN CODING STANDARDS..10
7.1 General Standards..10
7.2 Declarations..10

8. FORTRAN CODING GUIDELINES..11
8.1 General Guidelines...11
8.2 Declarations..11
8.3 Structuring/Style..12
8.4 Labeling...12

9. SCRIPT CODING STANDARDS...12

10. INTEGRATION STANDARDS...12

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 ii

ATTACHMENT: EOSDIS DOCUMENT 423-16-01, REVISION AA-1

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 1

MODIS Software Development
Standards and Guidelines

1. INTRODUCTION

1.1 Purpose and Scope

This document defines and describes the standards and guidelines to be used for
developing and maintaining software for use at the MODIS Team Leader Computing
Facility (TLCF) and for delivery to the EOSDIS Project. Included are the tools and
environment to be used at the SCFs, documentation standards, programming
standards, and integration standards.

The standards and guidelines that are in this document are intended to facilitate the
integration of the software into the EOSDIS Core System (ECS), to make the software
more easily maintainable in the future, and to assist in the portability of the code. A
standard must be followed. A guideline is a recommended practice.

1.2 Relationship to Project Standards

This document contains the EOSDIS document 423-16-01, Data Production Software
and Science Computing Facility (SCF) Standards and Guidelines in the Attachment,
which will be referred to as the Project Standards and Guidelines (PSG). This
document is inclusive of or supersedes all the standards and most of the guidelines in
the PSG. For easy reference, if there is a relationship between an item in this
document and the PSG, it is noted in the text.

1.3 Waivers

When the project waiver policy is specified, we will adopt it for any item that does not
meet the project standards. Requests for waivers to any of the standards should be
sent to the Science Software Transfer Group (SSTG) member who is integrating the
algorithm.

1.4 Document Status and Updates

This document has been updated to more closely follow Revision A of the PSG, dated
October 1996. The major changes are:

1. Renumbered sections and standards, as appropriate.

2. Changed Appendix A to Attachment.

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 2

3. The following Standards (contained in Revision B) have been deleted:

• Standard 5.1.1

• Standard 5.1.2

• Standard 5.3.1

• Standard 7.1.2

• Standard 7.2.5

• Standard 7.3.1

• Standard 7.4.1

• Standard 7.4.2

4. The following Standards (contained in Revision B) have been changed to
Guidelines:

• Standard 5.1.4 is now Guideline 6.1.3

• Standard 5.2.1 is now Guideline 6.2.3

• Standard 5.2.2 is now Guideline 6.2.4

• Standard 5.4.1 is now Guideline 6.5.1

• Standard 5.6.1 is now Guideline 6.6.1

• Standard 7.1.1 is now Guideline 8.1.4

• Standard 7.2.4 is now Guideline 8.2.3

5. Created C Coding Standard regarding comparison of floating variables for equality
(see Standard 5.1.1).

6. Revised Standard 5.3.2 regarding branching (see Standard 5.2.1).

7. Consolidated coding standards for FORTRAN 90 and FORTRAN 77 in Section 7.

8. Revised Standard 7.1.3 regarding comparison for strict equality (see Standard
7.1.1)

9. Consolidated coding guidelines for FORTRAN 90 and FORTRAN 77 in Section 8.

10. Deleted Section 9 FORTRAN 77 Coding Standards (see Section 7).

11. Deleted Section 10 FORTRAN 77 Coding Guidelines (see Section 8).

12. The Script Coding Standards and Guidelines are the same as those in the PSG
(see Section 9).

13. The Integration Standards and Guidelines are contained in the MODIS Version 2
Science Computing Facility Software Delivery Guide (see Section 10).

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 3

2. SCF STANDARDS AND GUIDELINES

All SCF Standards and Guidelines are accepted as they are stated in Section 2 of the
PSG. Refer to the Attachment, Section 2 of the PSG for these standards and
guidelines.

All MODIS code will follow the ESDIS Standards and Guidelines (see the Data
Products Software and SCF Standards and Guidelines, Revision A (October 1996)
found in the Attachment of this document). Standards have not been repeated in this
section of the document. Only standards above those dictated by ESDIS are in this
section.

3. DOCUMENTATION STANDARDS

Documentation that is to be delivered from the SCF to the TLCF may be done in
Microsoft Word, WordPerfect, or ASCII. Documentation from the TLCF to the Project
will be done in Word or WordPerfect. ASCII will be used for packing lists and similar
text files.

4. PROGRAMMING STANDARDS AND GUIDELINES

This section begins with standards and guidelines for commenting code. Subsequent
sections contain standards and guidelines for C and FORTRAN coding. No MODIS
code will be done in Ada, therefore, no standards or guidelines were included for that
language.

4.1 Commenting Standards

The commenting standards consist of the standard module prolog and a set of
guidelines for documenting the rest of the code.

4.1.1 Module Identification Standard

4.1.1.1 Source Code

To allow identification of individual items of code, a header (prolog), as defined below,
shall be inserted at the top of each module in the production software. A module is a
main program, subroutine, procedure, function, etc. This header should also be
included at the top of insert/include files, with the exception that the blocks relating to
input and output parameters are omitted. Prologs are required by the MODIS coding
standards to facilitate the integration of the science code. The SSTG will rely heavily
on information in the prologs to direct them in the integration of the SDP Toolkit.

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 4

NOTE: The example uses the C language style of comments and would need to be
converted for other languages. An exclamation mark “!” is used in the following
example to indicate all sections of the prolog that are mandatory, and the line numbers
are to be used in conjunction with the descriptions that follow. Line numbers are not
required in the actual code. However, the “!” is mandatory so that automated tools
used in the DAAC can extract portions of the prolog.

For heritage code, where the generation of this header information for every module is
an unreasonable burden, an alternative approach based on compilation units can be
used. A single header can be used to record the description and version history for all
modules contained within a file which is compiled as a unit. In this case the only
requirement for each module is to describe each input/output parameter (not globals).
Although this alternative approach is acceptable for heritage code, the former
approach, with a header for each module, is required for all new code.

The inclusion of the headers will allow automated tools within the DAAC I&T
environment to manipulate the software items and will ease understanding by the I&T
team.

Templates for module headers and include file headers can be accessed through the
PGS Toolkit interface software. The following is an example of a module header:

line no.
00 geonav(float pos[3],float smat[3][3],float coef[6],float sun[3],
01 int nsta,int ninc,int npix,float xlat[409],float xlon[409],
02 float solz[409],float sola[409],float senz[409],float sena[409])
03/*
04!C**
05
06 !Description: This subroutine calculates the sensor
07 orientation from the orbit position vector and input values of
08 attitude offset angles. The calculations assume that the angles
09 represent the yaw, roll and pitch offsets between the local
10 vertical reference frame (at the spacecraft position) and the
11 sensor frame. The outputs are the matrix which represents
12 the transformation from the geocentric rotating to sensor
13 frame, and the coefficients which represent the Earth scan
14 track in the sensor frame. The reference ellipsoid uses an
15 equatorial radius of 6378.137 km and a flattening factor of
16 1/298.257 (WGS 1984).05
17
18 !Input Parameters:
19 pos[3] satellite position
20 smat[3][3] sensor orientation matrix
21 coef[6] scan line coefficients
22 sun[3] unit sun vector in geocentric rotating coordinates
23 nsta number of first pixel to start with
24 ninc increment between pixels for computations
25 npix number of pixels in scan line
26
27 !Output Parameters:
28 xlat[409] latitude values
29 xlon[409] longitude values
30 solz[409] solar zenith values

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 5

31 sola[409] solar azimuth values
32 senz[409] sensor zenith values
33 sena[409] sensor azimuth values
34
35 !Revision History:
36 $LOG: geonav.c,v $
37 Revision 01.01 1993/10/12 10:12:28
38 Z. GREEN (zgreen@harp.gsfc.nasa.gov)
39 Initial delivery of software. Modified to comply with ESDIS
40 standards. It was a breeze.
41
42 Revision 01.00 1993/04/29 17:12:28
43 A. SMITH (asmith@harp.gsfc.nasa.gov)
44 Initial debugged version, based on original FORTRAN 77
45 subroutine developed in 1983 by C. ADAMS of the TELLUS
46 project.
47
48 !Team-unique Header:
49 References and Credits
49a Design Notes
50 !END***
 */

<code follows here>

The following notes describe how to use the header block, using the above example
as a reference.

 Line 00 : Name of main procedure, include file or subroutine/ procedure/ function.
If this is not the main procedure or an include file, it should contain the
function statement.

 Line 04 : Start of prolog. Initial marker can take the following values:

!FXY - contains FORTRANXY (XY = 77 or 90) executable statements

!C - contains C executable statements

!FXY-INC - FORTRANXY (XY = 77 or 90) include file

!C-INC - C include file

 Line 06 : A concise but complete summary of the overall function of the module.
Any references for methods and/or algorithms should be included. Use
as many lines as necessary.

 Line 18 : Header for input parameters

 Line 19-25 : Input parameters (not global variables) in the order they are presented to
the module with a short 1-2 line description of the parameter (and its
units where appropriate). Global variables should be described in the
module in which they are declared (i.e., only once).

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 6

 Line 27 : Header for output parameters.

 Line 28-33 : Output parameters (not global variables) in the order they are contained
in the function statement. Global variables should be described in the
module in which they are declared (i.e., only once). Same format as for
input parameters.

 Line 35 : Start of Revision History Log.

 Line 36 : If you are using an automated tool for revision control, you should insert
any statements required immediately after the Modification History Log
Header.

 Line 37-46 : Each revision should contain as a minimum the revision number, date,
time, person, and email address, with a short description of ALL the
changes made. The first revision should include the original author of
the code. Revisions should be ordered with the latest first. [Note: this
revision information can be supplemented with more detailed comments
in the code referencing the revision number].

Use a revision numbering scheme where the revision number is in the format "nn.mm"
where "mm" is updated each time a change is made to the module and "nn" is updated
when the function of the module changes or the algorithm/method is changed. [Note:
The release number for the data production software is not related to the revision
numbers on individual modules - the release number scheme should be determined
by the development team. The date associated with a release is more meaningful than
a release number to those outside the development team.]

 Line 48 : Start of Team-unique Header. SDST will define a standard MODIS
Team header that will appear in all prologs for code. This is required by
the ESDIS for the software released to the DAAC.

 Line 49 : Any references and credits should be noted here.

 Line 49a : Any design notes, limitations, etc. should be noted here.

 Line 50 : End of source code prolog.

4.1.1.2 Script file

A prolog similar to the one for source code will be used.

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 7

4.1.2 Commenting Guidelines

All code should have enough comments to make it understandable to another
programmer. The following are some guidelines to follow as you comment the code.

4.1.2.1 Comments should be maintained to ensure their correctness.

4.1.2.2 Comments should account for a significant percentage of the lines in the
source code.

4.1.2.3 Comments should appear before every major control construct (loops, if-
thens, switches, etc.).

4.1.2.4 Above-the-line comments should be immediately above the line of code
without separating; white space should be indented to the same column as
the line of code.

4.1.2.5 Right margin comments should use enough white space to clearly separate
comments from code and should all begin in the same column if they are
commenting a block of statements.

4.1.2.6 Comment delimiting should be done in a consistent manner.

5. C CODING STANDARDS

The mandatory coding standards for code generated in the C language follow. (See
Section 3 of the ESDIS Standards and Guidelines in the Attachment of this document.)

5.1 General Standards

5.1.1 Float and double variables shall not be compared for strict equality with other
float or double variables (i.e., using == or !=). Float and double variables may
be compared for strict equality with floating literals (e.g., a == 0.0), however,
this practice is discouraged and should be used sparingly. (Supersedes PSG
Guideline 3.3.13.) The rationale for this standard is portability.

5.1.2 Do not use pragma preprocessor directives. Different compilers may produce
different implementations of these directives, or (if the directive is not
recognized) no implementation at all. The rationale for this standard is
portability.

5.2 Structuring/Style

5.2.1 Unconditional branching (GOTO) shall only reference a label further down in
the code. (Supersedes PSG Guideline 3.3.7.) The rationale for this standard is
maintainability.

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 8

5.3 Bit Manipulation

5.3.1 Structures shall not contain bit field elements. Compilers differ in whether bits
are counted from left to right, or from right to left. The rationale for this standard
is portability.

5.4 Functions

5.4.1 All user-defined functions shall be typed and prototyped. Functions which do not
return a value shall be typed as void. (Supersedes PSG Guidelines 3.3.14 and
3.3.15.) The rationale for this standard is portability. An example of prototyping
follows:

int GreatestCommonDenominator(int large_term; int small_term);

6. C CODING GUIDELINES

The following are suggested guidelines for C code. The book C Programming
Guidelines by Thomas Plum is recommended as a resource for additional guidelines
for writing portable, maintainable, and effective code.

6.1 General Guidelines

6.1.1 Free resources that have been allocated.

6.1.2 Use the sizeof operator to determine the length of a structure.

6.1.3 External names may be used with a size greater than the limit in ANSI of 6
characters, but not to exceed 31 characters. (Supersedes PSG Guideline
3.3.19)

6.2 Declarations

6.2.1 Declarations should be ordered consistently throughout the code. Use
whatever method makes the most sense for the particular application. Pointers
should immediately follow what they are pointing to. For example you could
order them as follows:

1. . declaration of external variables in type order,

2. . declaration of local variables in type order,

3. . declaration of functions used in type order.

The type order could be char, short, unsigned short, long, unsigned long, float,
double, enum, struct, union, void. (Supersedes PSG Guideline 3.3.4)

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 9

6.2.2 All pointer variables should be named in a consistent fashion. For example all
pointer variables may consist of the name of the variable with an "_p" at the end
(e.g., precip_p may be a pointer to precip).

6.2.3 Shared global definitions should be put in a header file. The rationale for this
guideline is maintainability.

6.2.4 System library functions should not be declared; the appropriate header files
should be included.

6.3 Structuring/Style

6.3.1 There should be sufficient white space to make the code readable. Blank lines
between each major code structure are encouraged.

6.3.2 Use a consistent style to highlight code structure and increase readability. This
includes a consistent and descriptive naming convention for variables. All
structures will use a consistent indentation scheme within a module for each
succeeding level of the structures.

6.3.3 Names of symbolic constants and user-defined macros in #define statements
should be in upper-case. All other names should not be in all upper-case. Use
of mixed case is encouraged.

6.3.4 Every header should prevent multiple inclusions of itself. For example:

/* This is a dummy header file with the name dummy.h that shows how to
avoid multiple declarations of variables and functions.
Note that the name of the header file is used as a parameter that is
defined or undefined depending on whether it has been invoked in the
module processing.
The use of underlines and captial letters make it unlikely that this
parameter will be confused with others in the program.
*/
#ifndef __DUMMY_H_ /* see if this header has been invoked before */
#define __DUMMY_H_ /* if it has not, then define it's "definition
variable" so it will not be invoked again by the including module. Then
proceed to process the header.*/
/*
 header code goes here, including necessary #include
*/
#endif

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 10

6.4 Operators

6.4.1 Use explicit type casts. The rationale for this standard is portability.
(Supersedes PSG Guideline 3.3.12.) For example:

long integer_variable;
long * integer_pointer;
double floating_point_var;
integer_pointer = &integer_variable; /* per guideline */
integer_pointer = &floating_point_var; /* contrary to guideline */
integer_variable = (long)floating_point_var;/* per guideline */

6.5 Bit Manipulation

6.5.1 Bitwise operations should not be used on signed numbers. The rationale for this
standard is portability.

6.6 Error Checking

6.6.1 All return call statuses should be checked and the appropriate actions taken.
The rationale for this guideline is maintainability.

7. FORTRAN CODING STANDARDS

The mandatory coding standards for code generated in either FORTRAN 77 or
FORTRAN 90 language follow. (See Section 4 of the PSG in the Attachment.)

NOTE: Standards applying only to FORTRAN 77 or FORTRAN 90 are so marked in the
text.

7.1 General Standards

7.1.1 Double precision and real variables should not be compared for strict equality
with other double precision or real variables (i.e., using .EQ., .NE., ==, /=).
Double precision and real variables may be compared for strict equality with
double precision or real literals (e.g., a .EQ. 0.0), however, this practice is
discourages and should be used sparingly. (Supersedes PSG Guideline
4.3.13.) The rationale for this standard is portability.

7.2 Declarations

7.2.1 All variables shall be explicitly declared. The IMPLICIT NONE statement shall
appear in each routine. The rationale for this standard is maintainability. This
standard applies to FORTRAN 90 code only; however, it should be applied to
FORTRAN 77 code as a guideline.

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 11

7.2.2 All variables shall be initialized prior to use. (Supersedes PSG Guideline 4.3.3)
The rationale for this standard is portability.

7.2.3 PARAMETER variables shall not be redefined. (Supersedes PSG Guideline
4.3.5) The rationale for this standard is maintainability.

8. FORTRAN CODING GUIDELINES

The following are suggested guidelines for FORTRAN 77 and FORTRAN 90 code. At
the current time we have no book to recommend for additional guidelines for writing
portable, maintainable, and effective code.

8.1 General Guidelines

8.1.1 Format statements should be collected together, preferably at the end of the
routine.

8.1.2 Only SAVEd variables are guaranteed to retain their value between module
calls; all other variables should be assumed to be undefined for each access of
a module. Except for loop indices, variables should not be re-used within a
routine.

8.1.3 Free all resources that have been allocated.

8.1.4 Compiler options should not be used to perform functions that can be handled
by the language. For example, SAVE statements should be used to statically
allocate local variables rather than a compiler option such as -static on the SGI
FORTRAN compiler. The rationale for this guideline is portability.

8.2 Declarations

8.2.1 All pointer variables should be named in a consistent fashion. For example all
pointer variables may consist of the name of the variable with an "_p" at the end
(e.g., precip_p may be a pointer to precip).

8.2.2 A pointer should not point to variables of types different from that indicated by
the pointer declaration.

8.2.3 COMMON Blocks should be named. The rationale for this guidline is readability.

8.2.4 EQUIVALENCE statements should not be used.

8.3 Structuring/Style

8.3.1 There should be sufficient white space to make the code readable. Blank lines
between each major code structure are encouraged.

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 12

8.3.2 Use mixed case rather than all upper case.

8.3.3 Computed and arithmetic GOTOs may be used but are strongly discouraged.
(Supersedes PSG 4.3.10)

8.4 Labeling

8.4.1 A consistent labeling scheme will be used, with labels increasing in value
through a module. (Supersedes PSG Guideline 4.3.12) The rationale for this
standard is maintainability.

9. SCRIPT CODING STANDARDS

The script coding standards and guidelines are contained in Section 7 of the PSG
(see Attachment).

10. INTEGRATION STANDARDS

Integration standards and guidelines are contained in the MODIS Version 2 Science
Computing Facility Software Delivery Guide.

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 A-1

ATTACHMENT: EOSDIS DOCUMENT 423-16-01, REVISION A

This Attachment contains the Data Production Software and Science Computing
Facility (SCF) Standards and Guidelines, EOSDIS document 423-16-01. The original
document can be found on URL: spsosun.gsfc.nasa.gov/ESDIS_Docs.html.

MODIS Software Development Standards and Guidelines SDST-022C

April 21, 1997 A-2

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Data Production Software and

Science Computing Facility (SCF)

Standards and Guidelines

Revision A

October 1996

[Image]

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A i October 1996

April 21, 1997 Attachment

Data Production Software and
Science Computing Facility (SCF)

Standards and Guidelines

Approved by

____________________________ _______________
Stan Scott Date
ESDIS Science Software Manager
GSFC - Code 505

____________________________ ________________
Steve Kempler Date
Data Processing Manager
GSFC - Code 505

____________________________ ________________
Dale Harris Date
Associate Director for ESDIS Project
GSFC - Code 505

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A ii October 1996

April 21, 1997 Attachment

CHANGE RECORD PAGE

Issue Date Pages Affected Description

Original 01/14/94 All Baseline

CH01 02/15/95 i, ii, iii, iv, 1, 5, 6, 7, 8, 9,
10, 11, 14, 16, 17, 18

CCR 505-01-16-001

Rev A 10/15/96 All CCR 505-01-16-002-A

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A iii October 1996

April 21, 1997 Attachment

LIST OF AFFECTED PAGES

Page No. Revision Page No. Revision

Title Rev A 4-6 Rev A

i Rev A 5-1 Rev A

ii Rev A 5-2 Rev A

iii Rev A 6-1 Rev A

iv Rev A 6-2 Rev A

v Rev A 6-3 Rev A

vi Rev A 6-4 Rev A

vii Rev A 6-5 Rev A

viii Rev A 6-6 Rev A

ix Rev A 7-1 Rev A

x Rev A 7-2 Rev A

1-1 Rev A A-1 Rev A

1-2 Rev A A-2 Rev A

2-1 Rev A A-3 Rev A

2-2 Rev A A-4 Rev A

3-1 Rev A A-5 Rev A

3-2 Rev A A-6 Rev A

3-3 Rev A A-7 Rev A

3-4 Rev A A-8 Rev A

4-1 Rev A B-1 Rev A

4-2 Rev A B-2 Rev A

4-3 Rev A B-3 Rev A

4-4 Rev A B-4 Rev A

4-5 Rev A AB-1 Rev A

AB-2 Rev A

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A iv October 1996

April 21, 1997 Attachment

CONTENTS

1 . I n t r o d u c t i o n . 1 - 1
1.1 Introduction... 1-1
1.2 Scope1-1
1.3 Authority .. .1-1
1.4 Waivers...1-1
1.5 Extensions of Standards..1-2
1.6 Off -The-Shelf, Third-Party Software Policy..1-2
1.7 Related Documentation1-2

2. SCF Standards and Guidelines . 2 - 1
2.1 SCF Hardware.. 2-1

2.1.1 Intent... 2-1
2.1.2 Standards...2-1
2.1.3 Guidelines... 2-1

2.2 SCF Communications (Deleted).. 2-1
2.3 SCF Software... 2-1

2.3.1 Intent... 2-1
2.3.2 Standards...2-1

2.4 SCF Security.. 2-1
2.4.1 Intent... 2-1
2.4.2 Guidelines... 2-2

3. Data Production Software Standards and Guidelines for the C
L a n g u a g e . 3 - 1
3.1 Intent...... 3-1
3.2 Standards...3-1

3.2.1 Comply with ANSI Standard..3-1
3.2.2 Use SDP Toolkit Calls..3-1

3.3 Guidelines... 3-1
3.3.1 ANSI Checking..3-1
3.3.2 File Inclusion .. 3-1
3.3.3 Initialize Variables.. 3-1
3.3.4 Order Declarations.. 3-2
3.3.5 Naming Convention...3-2
3.3.6 Integer Loop Control Variables... 3-2
3.3.7 Avoid GOTOs3-2
3.3.8 Consistent Style .. 3-2
3.3.9 Pointer Type .. 3-2
3.3.10 Variable Value Retention... 3-2
3.3.11 Contiguous Use Assumption...3-2
3.3.12 Implicit Type3-3
3.3.13 Equality Comparisons.. 3-3
3.3.14 Function Prototype .. 3-3
3.3.15 Void Functions.. 3-3
3.3.16 Use "div" and "ldiv".. 3-3
3.3.17 Rounding ... 3-4
3.3.18 Exceeding ANSI C 32K Limit . 3-4
3.3.19 Exceeding ANSI C 6-Character Name Limit...............................3-4
3.3.20 Comply with POSIX Standard.. 3-4

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A v October 1996

April 21, 1997 Attachment

4. Data Production Software Standards and Guidelines for the Fortran
L a n g u a g e . 4 - 1
4.1 Intent...... 4-1
4.2 Standards...4-1

4.2.1 FORTRAN Compiler.. 4-1
4.2.2 Use SDP Toolkit Calls..4-1
4.2.3 FORTRAN 77, Fortran 90, and SDP Toolkit Calls.........................4-1

4.3 Guidelines... 4-1
4.3.1 FORTRAN 77 Extensions .. .4-2
4.3.2 Compatability with the next FORTRAN Standard .. 4-2
4.3.3 Initialize Variables.. 4-3
4.3.4 Order Declarations.. 4-3
4.3.5 PARAMETER Variables .. .4-3
4.3.6 COMMON Blocks .. .4-3
4.3.7 Naming Convention...4-4
4.3.8 Integer Loop Control Variables... 4-4
4.3.9 Avoid GOTOs4-4
4.3.10 Avoid Computed and Arithmetic GOTOs...................................4-4
4.3.11 Terminate DO-loops.. 4-4
4.3.12 Consistent Style... 4-4
4.3.13 Equality Comparisons.. 4-4
4.3.14 Consistent Labeling..4-4
4.3.15 Generic Intrinsic Functions...4-4
4.3.16 Rounding ... 4-5
4.3.17 Comply with POSIX Standard.. 4-5

5. Data Production Software Standards and Guidelines for the Ada
L a n g u a g e . 5 - 1
5.1 Intent...... 5-1
5.2 Standards...5-1

5.2.1 Comply with National Standard...5-1
5.2.2 Use SDP Toolkit Calls..5-1
5.2.3 Prohibited SDP Toolkit Calls... 5-1
5.2.4 Ada Library Support..5-1

5.3 Guidelines... 5-1
5.3.1 Avoid Platform-Unique Features... 5-1
5.3.2 Ada Style References .. 5-2

6 . Module Ident i f i cat ion Standard. 6 -1
6.1 Intent...... 6-1
6.2 Standards...6-1
6.3 Example .. .6-1

7 . Scr ip t Language S tandard . 7 -1
7.1 Intent...... 7-1
7.2 Standards...7-1

7.2.1 Shell Languages...7-1
7.2.2 Shell Names..7-1

7.3 Guidelines... 7-1
7.3.1 Minimize Number of Script Languages.......................................7-1
7.3.2 Use Efficient Mixture of Compiled and Interpreted Programming

Languages..7-2

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A vi October 1996

April 21, 1997 Attachment

Appendix A. ESDIS Policy Regarding Prohibited Functions in Science Data
P r o d u c t i o n S o f t w a r e . A-1

Appendix B. ESDIS Policy for Software Standards, Changes and
W a i v e r s . B-1

 Abbrev ia t ions and Acronyms . AB-1

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A vii October 1996

April 21, 1997 Attachment

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 1-1 October 1996

April 21, 1997 Attachment

Data Production Software and SCF Standards
and Guidelines

1. INTRODUCTION

1.1 PURPOSE

The purpose of these standards is, fundamentally, to avoid excess costs over the life cycle
of the Data Production Software. The standards contained in this document are motivated
by a need for maintainable and portable software.

1.2 SCOPE

The standards promulgated in this document apply to networked Science Computing
Facilities (SCFs) and data production software that will be delivered for integration into the
Data Processing Subsystem of the Earth Observing System (EOS) Data and Information
System (EOSDIS) Core System (ECS) at the Distributed Active Archive Centers
(DAACs). The scope of these standards explicitly excludes prototype code or supporting
software that may be used in building Data Production Software but that will not be
delivered to the DAAC.

The Project's policy for Earth Science Data and Information System (ESDIS) Science
Team prohibited functions is presented in Appendix A.

The standards in this document are mandatory. Standards statements always include the
word "shall". Guidelines found in this document are not mandatory, but are included as
recommendations. The guidelines always include the word "should" or "may" in the
statement.

1.3 AUTHORITY

This document is issued under the authority of the ESDIS Project (the Project). The
original standards were developed by the ESDIS Project with the assistance and consensus
of the Data Processing Focus Team (DPFT). The DPFT membership included several
representatives from EOS Data Production Software Developers and DAACs.

1.4 WAIVERS

The Project may issue waivers to these standards for performance or heritage software on
a case by case basis.

The Project's policy for ESDIS Science Team standards and waivers is presented in
Appendix B.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 1-2 October 1996

April 21, 1997 Attachment

1.5 EXTENSIONS OF STANDARDS

The Project anticipates that these standards may be extended in the future.

1.6 OFF-THE SHELF, THIRD-PARTY SOFTWARE POLICY

Existing off-the-shelf software from a third party (e.g., the McIdas library, MODTRAN,)
are exempt from the module identification standard (Section 6). The science team is
responsible for ensuring correct compilation and execution of the off-the-shelf software at
the DAAC.

1.7 RELATED DOCUMENTATION

The following documents are referenced or contain policies or other matter that are binding
upon the contents of this document:

a.) Functional and Performance Requirements Specification for the Earth Observing
System Data and Information System (EOSDIS) Core System, GSFC 423-41-
02, 16 February 1993

b.) Interface Control Document between EOSDIS Core System (ECS) and Science
Computing Facilities (SCF), GSFC 505-41-33

c.) SDP Toolkit Users Guide, GSFC 505-16-03, or superseding versions

d.) Military Standard; Ada Programming Language, MIL-STD-1815A, 22 January
1983

e.) Military Standard; FORTRAN, MIL-STD-1753, 9 November 1978

f.) IEEE Standard for Information Technology, Portable Operating System Interface
(POSIX), Part 2: Shell and Utilities, IEEE Std 1003.2-1992

g.) Programming Languages - C (revision and redesignation of ANSI X3.159-
1989), ANSI/ISO 9899-1990

h.) American National Standard Programming Language FORTRAN, ANSI X3.9-
1978, ISO 1539-1980 (E)

i.) American National Standard for Programming Language- Fortran- Extended,
ANSI X3.198-1992.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 2-1 October 1996

April 21, 1997 Attachment

2. SCF STANDARDS AND GUIDELINES

2.1 SCF HARDWARE

2.1.1 Intent

The intent of the SCF hardware standards is to control the number of versions of the
Science Data Production (SDP) Toolkit that the Project must support for the Data
Production Software teams.

2.1.2 Standards

2.1.2.1 SCF hardware shall be capable of running the software included in the SCF
Software Standards.

2.1.3 Guidelines

2.1.3.1 SCF hardware hosting the SDP Toolkit should be compatible with hardware from
the set of SDP Toolkit hosts established by the ECS Contractor. The rational for
this guideline is to facilitate portability.

2.1.3.2 SCF hardware should be from the same vendor family as the target DAAC data
processing computer. The rational for this guideline is to facilitate portability.

2.2 SCF COMMUNICATIONS (DELETED)

2.3 SCF SOFTWARE

2.3.1 Intent

The intent of this standard is to ensure correct operation of the SCF- DAAC interface.

2.3.2 Standards

2.3.2.1 SCFs shall have software that supports applicable network protocols and
mechanisms described in Section 4 of the ECS-SCF ICD.

2.3.2.2 SCFs that are used to order data from the DAAC shall have software that provides
the capability to use an ECS client.

2.4 SCF SECURITY

2.4.1 Intent

The intent of this guideline is to help establish minimum security requirements for
networked SCFs. More elaborate security may be imposed locally.

2.4.2 Guidelines

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 2-2 October 1996

April 21, 1997 Attachment

2.4.2.1 Multi-user SCFs should use system security with procedures to establish and
maintain, as a minimum:

a.) Passwords,

b.) User Accounts,

c.) User Permissions.

2.4.2.2 All passwords on networked, multi-user SCFs should adhere to the following:

a.) Passwords should consist of 6 or more characters, including at least one
numeric or "special" character (such as a space or asterisk);

b.) Passwords should not be the user's login name, or circular shift of that name.

2.4.2.3 A password aging scheme should be employed, to force users to change
passwords periodically (e.g., every 90 days).

2.4.2.4 The System Administrator of networked SCFs should:

a.) Reset all factory-set passwords immediately;

b.) Disable the Guest account;

c.) Either omit the Anonymous FTP account or restrict it to a specific directory;

d.) Assure the initial password for a new account is not a forename-surname or
other usage of the user name;

e.) Minimize distribution of the root password.

2.4.2.5 The System Administrator of networked, multi-user SCFs should:

a.) Establish groups for users with read and execute permissions for group
members;

b.) Remove global read/write access to any files which are not for public view;

c.) Remove global execute access to any directory which is not for public access.

2.4.2.6 The command ".netrc" should not be used (It would allow login without a
password).

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 3-1 October 1996

April 21, 1997 Attachment

3. DATA PRODUCTION SOFTWARE STANDARDS AND GUIDELINES FOR
THE C LANGUAGE

3.1 INTENT

The intent of this standard is to facilitate portability of data production software and to
control costs at the DAACs.

3.2 STANDARDS

The mandatory coding standards for data production software generated in the C language
follow.

3.2.1 Comply with ANSI Standard

The software shall comply with the ANSI standard specification for C (ANSI ISO 9899-
1990). Vendor specific extensions to the standard shall not be used. The rationale for this
standard is portability.

3.2.2 Use SDP Toolkit Calls

External calls from the operational data production software in the DAAC, for system and
resource accesses, file I/O requests, error message transaction, and metadata formatting,
shall be made through SDP Toolkit calls. The software shall comply with the restrictions
found in Appendix A. Data production software delivered to the DAAC shall be fully
interoperable with the SDP Toolkit installation at the DAAC. The rationale for this standard
is portability as well as having one group develop this code instead of all science teams
duplicating the development effort.

3.3 GUIDELINES

3.3.1 ANSI Checking

It is strongly recommended that code be compiled by the IT at the SCF with the ANSI
checking option on. The rationale for this guideline is portability.

3.3.2 File Inclusion

The <> and "" notation should be used for including standard C header files and
programmer created header files, respectively. The rationale for this guideline is
maintainability.

3.3.3 Initialize Variables

All variables should be initialized prior to use (except for static variables), i.e. no
assumptions should be made that variables are initialized to zero. The rationale for this
guideline is portability.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 3-2 October 1996

April 21, 1997 Attachment

3.3.4 Order Declarations

Declarations should be ordered consistently throughout the code. An example of a
consistent order is:

a.) declaration of module arguments in the same order as the argument list (before
the opening brace of the function),

 b.) declaration of external variables,

 c.) declaration of local variables,

 d.) declaration of functions used.

The rationale for this guideline is maintainability.

3.3.5 Naming Convention

A consistent and descriptive naming convention should be adopted. The rationale for this
guideline is maintainability.

3.3.6 Integer Loop Control Variables

Loop control variables should be of INTEGER type. The rationale for this guideline is
portability. Note: This guideline includes the subtypes of integer, such as char, short,
long, etc.

3.3.7 Avoid GOTOs

Unconditional branching (GOTO) should only be used within nested structures and should
only reference a label further down in the code. The rationale for this guideline is
maintainability.

3.3.8 Consistent Style

Use a consistent style to highlight code structure and increase readability. The rationale for
this guideline is maintainability.

3.3.9 Pointer Type

A pointer should have the same type as the variable it points to. The rationale for this
guideline is portability.

3.3.10 Variable Value Retention

Static variables are guaranteed to retain their value between module calls; all other variables
in a module should be assumed to be undefined for each access of a module. External
variables also retain their values between module calls. The rationale for this guideline is
portability.

3.3.11 Contiguous Use Assumption

Contiguous use of memory by arrays should not be assumed. The rationale for this
guideline is portability.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 3-3 October 1996

April 21, 1997 Attachment

3.3.12 Implicit Type

Avoid implicit type casts. The rationale for this guideline is portability. Note: C language
processors will generate code to cast between the types on the left and right side of an
assignment operator, but reliance on this implicit type conversion is not a good idea. The
programmer should include explicit type casts:

long integer_variable;

long * integer_pointer;

double floating_point_variable;

integer_pointer = &integer_variable; /* per guideline */

integer_pointer = &floating_point_variable; /* contrary to guideline */

integer_variable = (long)floating_point_variable; /* per guideline */

3.3.13 Equality Comparisons

Float and double variables should not be compared for strict equality (i.e., using == or
!=). The rationale for this guideline is portability.

3.3.14 Function Prototype

All functions should be typed (and preferably prototyped). The rationale for this guideline
is maintainability. Note: the use of function prototypes significantly reduces interface
errors in C. A function prototype tells the compiler the type of the function and the number
and types of the arguments. An example follows:

int GreatestCommonDenominator(int large_term; int small_term);

3.3.15 Void Functions

Functions which do not return a value should be typed as void. The rationale for this
guideline is maintainability.

3.3.16 Use "div" and "ldiv"

The div and ldiv functions in the C Standard Library should be used to obtain consistent
values of remainders when the quotient is negative. The rationale for this guideline is
portability, since the C language definition does not specify how to handle this situation,
and at least two answers are possible. Note: in general static analysis cannot ensure that the
quotient will never be negative so the library functions should be used instead of the %
operator.

3.3.17 Rounding

The correct functioning of code should not depend on the rounding behavior of converting
a long double to other floating types or double to a float. The rationale for this guideline is
portability.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 3-4 October 1996

April 21, 1997 Attachment

3.3.18 Exceeding ANSI C 32K Limit

Data objects (arrays or structures), of a size greater than the limit in ANSI C of 32K for
data objects, may be used.

3.3.19 Exceeding ANSI C 6-Character Name Limit

External names, of a size greater than the limit in ANSI C of 6 characters, may be used.

3.3.20 Comply with POSIX Standard

The source code should comply with IEEE Standard 1003.1, POSIX-Part 1: System
Application Program Interface (API) [C Language]. The rationale for this guideline is
portability.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 4-1 October 1996

April 21, 1997 Attachment

4. DATA PRODUCTION SOFTWARE STANDARDS AND GUIDELINES FOR
THE FORTRAN LANGUAGE

4.1 INTENT

The intent of this standard is to facilitate portability of data production software and to
control costs at the DAACs.

4.2 STANDARDS

The mandatory coding standards for data production software generated in the FORTRAN
language follow.

4.2.1 FORTRAN Compiler

The FORTRAN compiler standard consists of the following parts:

a.) Science data production software shall comply with the ANSI standard
specification for FORTRAN 77 (ANSI/X3.9-1978) or for Fortran 90 (ANSI
X3.198-1992).

b.) Heritage FORTRAN 66 code shall be made to compile using FORTRAN 77
or Fortran 90 prior to delivery to the DAAC. The rationale for this standard is
portability.

4.2.2 Use SDP Toolkit Calls

External calls from the operational data production software in the DAAC, for system and
resource accesses, file I/O requests, error message transaction, and metadata formatting,
shall be made through SDP Toolkit calls. Data production software delivered to the DAAC
shall be fully interoperable with the SDP Toolkit installation at the DAAC. The rationale
for this standard is portability as well as having one group develop this code instead of all
science teams duplicating the development effort.

 4.2.3 FORTRAN 77, Fortran 90, and SDP Toolkit Calls

The FORTRAN 77 software shall comply with the restrictions found in Appendix A.

FORTRAN 77 code shall use only those SDP Toolkit calls that provide capabilities found
in the FORTRAN 77 language. The rationale for this standard is that there will be no
FORTRAN 77 bindings for SDP Toolkit capabilities requiring unique Fortran 90 features.

4.3 GUIDELINES

The first guideline is the extensions to the FORTRAN 77 language that follow. They were
permitted prior to the development of the ESDIS waiver policy and are considered as an
EOS community waiver.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 4-2 October 1996

April 21, 1997 Attachment

4.3.1 FORTRAN 77 Extensions

The following extensions to FORTRAN 77 may be used:

a.) INCLUDE statement (MIL-STD-1753, Section 2.3),

b.) BYTE data type,

c.) DO WHILE (MIL-STD-1753, Section 2.2),

d.) ENDDO (MIL-STD-1753, Section 2.1),

e.) STRUCTURE data types,

f.) names up to 31 characters in length,

g.) IMPLICIT NONE statement (MIL-STD-1753, Section 2.4),

h.) block IF with ELSE IF and END IF,

i.) in-line comments,

j.) extended character set to include lower case letters, underscore ("_"), left and
right angle bracket ("[" and "]"), quotation mark ("), exclamation point ("!"),
percent sign ("%"), and ampersand ("&"),

k.) initialization of data in declaration,

l.) long line extensions beyond 72 characters per line.

m.) bit manipulation (MIL-STD-1753, Section 2.6), including: Inclusive OR,

Logical AND, Logical Complement, Exclusive OR, Logical Shift, Circular
Shift, Bit Extraction, Bit Move, Bit Testing, Set Bit, Clear Bit, and Bit
Constants,

n.) EXIT ().

The ESDIS Project will attempt to procure FORTRAN 77 compilers for the DAACs that
permit the above extensions to the ANSI standard language, but the DAAC compiler
acceptance of these extensions can not be guaranteed. Those science teams possessing
heritage code that uses most of these extensions may wish to consider converting the code
to use a Fortran 90 compiler. The FORTRAN 77 language and several extensions are a
subset of the Fortran 90 language.

4.3.2 Compatibility with the next FORTRAN Standard

Any constructs and features of the Fortran 90 language that are marked for removal in the
next release of the FORTRAN standard should not be used (ANSI X3.198-1992, Section
1.6 & Annex B):

a.) Arithmetic IF.

b.) Real and double precision DO control variables and DO loop control
expressions.

c.) Shared DO termination and termination on a statement other than END DO or
CONTINUE.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 4-3 October 1996

April 21, 1997 Attachment

d.) Branching to an END IF statement from outside its IF block.

e.) Alternate Return.

f.) PAUSE statement.

g.) ASSIGN and assigned GO TO statements.

h.) Assigned FORMAT specifiers.

e.) cH edit descriptor.

4.3.3 Initialize Variables

All variables should be initialized prior to use. The rationale for this guideline is
portability.

4.3.4 Order Declarations

Declarations should be ordered consistently throughout the code. An example of consistent
ordering is:

a.) declaration of module arguments in the same order as the argument list,

b.) declaration of global variables in COMMON (using INCLUDE files),

c.) declaration of local PARAMETERs (types and values),

d.) declaration of local variable types,

e.) declaration of user defined function types used,

f.) EXTERNAL declarations,

g.) INTRINSIC declarations,

h.) declaration of DATA values.

The rationale for this guideline is maintainability.

4.3.5 PARAMETER Variables

PARAMETER variables should not be redefined. The rationale for this guideline is
maintainability.

4.3.6 COMMON Blocks

COMMON blocks should be inserted into the code using INCLUDE. The rationale for this
guideline is maintainability.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 4-4 October 1996

April 21, 1997 Attachment

4.3.7 Naming Convention

A consistent and descriptive naming convention should be adopted. The rationale for this
guideline is maintainability.

4.3.8 Integer Loop Control Variables

Loop control variables should be of INTEGER type. The rationale for this guideline is
maintainability.

4.3.9 Avoid GOTOs

Unconditional branching (GOTO) should only be used within nested structures. The
rationale for this guideline is maintainability.

4.3.10 Avoid Computed and Arithmetic GOTOs

Computed and arithmetic GOTOs should not be used. The rationale for this guideline is
maintainability.

4.3.11 Terminate DO-loops

DO-loops should be terminated with CONTINUE or ENDDO. The index of a DO loop
should always be of integer type, and the index should not be modified inside the loop.
The rationale for this guideline is maintainability.

4.3.12 Consistent Style

Use a consistent style to highlight code structure and increase readability. The rationale for
this guideline is maintainability.

4.3.13 Equality Comparisons

Real and complex variables should not be compared for strict equality (i.e., using .EQ. or
.NE.). The rationale for this guideline is portability.

4.3.14 Consistent Labeling

A consistent labeling scheme should be used. The rationale for this guideline is
maintainability.

4.3.15 Generic Intrinsic Functions

Generic intrinsic functions should be used rather than type specific functions. The rationale
for this guideline is portability.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 4-5 October 1996

April 21, 1997 Attachment

4.3.16 Rounding

The correct functioning of code should not depend on the rounding behavior of converting
a DOUBLE PRECISION or COMPLEX to other floating types. The rationale for this
guideline is portability.

4.3.17 Comply with POSIX Standard

The FORTRAN 77 source code should comply with IEEE Standard 1003.9, POSIX
FORTRAN 77, Language Interfaces, Part 1: Binding for System Application Program
Interface (API). The rationale for this guideline is portability.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 4-6 October 1996

April 21, 1997 Attachment

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 5-1 October 1996

April 21, 1997 Attachment

5. DATA PRODUCTION SOFTWARE STANDARDS AND GUIDELINES FOR
THE ADA LANGUAGE

5.1 INTENT

The intent of this standard is to facilitate portability of data production software and to
control costs at the DAACs.

5.2 STANDARDS

The following are the list of mandatory standards for data production software generated in
the Ada language:

5.2.1 Comply with National Standard

The software shall comply with the national standard specification for Ada (MIL-STD-
1815-A). The rationale for this standard is portability.

5.2.2 Use SDP Toolkit Calls

External calls from the operational data production software in the DAAC, for system and
resource accesses, file I/O requests, error message transaction, and metadata formatting,
shall be made through SDP Toolkit calls. The Pragma Interface Statement shall be used to
interface with all commercial library software provided as part of the SDP Toolkit. Ada
bindings for the SDP Toolkit will not be developed and it is the software developer's
responsibility to utilize the FORTRAN or C version of the SDP Toolkit correctly. The
rationale for this standard is portability as well as having one group develop this code
instead of all science teams duplicating development effort.

5.2.3 Prohibited SDP Toolkit Calls

The delivered code shall not make SDP Toolkit calls from within Ada tasks. The rationale
for this standard is operability and maintainability.

5.2.4 Ada Library Support

There are no Ada libraries supported. All software shall be delivered in source code form.

5.3 GUIDELINES

5.3.1 Avoid Platform-Unique Features

Since Chapter 13 of MIL-STD-1815-A deals specifically with features for adapting Ada to
platform-unique features, Chapter 13 features should be used with care. Such code should
be isolated as much as possible and commented extensively to make the task of porting to a
new host as easy as possible.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 5-2 October 1996

April 21, 1997 Attachment

5.3.2 Ada Style References

There are references for the production of good Ada code. The following reference might
be useful in developing local coding guidelines and styles:

Seidewitz E., et al., Ada Style Guide, Version 1.1, GSFC SEL 87-002, 1987.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 6-1 October 1996

April 21, 1997 Attachment

6. MODULE IDENTIFICATION STANDARD

6.1 INTENT

Module Identifications are needed to assist in the Science Software Integration and Test
(SSI&T) process at the DAAC.

6.2 STANDARDS

To allow identification of individual items of code, a header (prolog), as defined below,
shall be inserted at the top of each module in the Fortran, C or Ada production software. A
module is a main program, subroutine, procedure, function, etc. This header shall also be
included at the top of insert/include files, with the exception that the blocks relating to input
and output parameters are omitted. Note: The example uses the C language style of
comments, and would need to be converted for other languages. All entries preceded with
"!" are mandatory with the exceptions: 1) of "!Team-unique Header:" if there is no team-
unique header; and 2) of "!Input/Output Parameters:" if there are none of them in the
module.

For heritage code, where the generation of this header information for every module is an
unreasonable burden, an alternative approach based on compilation units can be used. A
single header can be used to record the description and version history for all modules
contained within a file which is compiled as a unit. In this case the only requirement for
each module is to describe each input/output parameter (not globals). Although this
alternative approach is acceptable for heritage code, the former approach, with a header for
each module, is required for all new code.

The inclusion of the headers will allow automated tools within the DAAC SSI&T
environment to manipulate the software items and will ease understanding by the SSI&T
team.

6.3 EXAMPLE

line no.
00 geonav(float pos[3],float smat[3][3],float coef[6],float sun[3],
01 int nsta,int ninc,int npix,float xlat[409],float xlon[409],
02 float solz[409],float sola[409],float senz[409],float sena[409])
03/*
04!C**
05
06 !Description: This subroutine calculates the sensor
07 orientation from the orbit position vector and input values of
08 attitude offset angles. The calculations assume that the angles
09 represent the yaw, roll and pitch offsets between the local
10 vertical reference frame (at the spacecraft position) and the
11 sensor frame. The outputs are the matrix which represents
12 the transformation from the geocentric rotating to sensor
13 frame, and the coefficients which represent the Earth scan

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 6-2 October 1996

April 21, 1997 Attachment

14 track in the sensor frame. The reference ellipsoid uses an
15 equatorial radius of 6378.137 km and a flattening factor of
16 1/298.257 (WGS 1984).05
17
18 !Input Parameters:
19 pos[3] satellite position
20 coef[6] scan line coefficients
21 sun[3] unit sun vector in geocentric rotating coordinates
22 nsta number of first pixel to start with
23 ninc increment between pixels for computations
24 npix number of pixels in scan line
25
26 !Output Parameters:
27 xlat[409] latitude values
28 xlon[409] longitude values
29 solz[409] solar zenith values
30 sola[409] solar azimuth values
31 senz[409] sensor zenith values
32 sena[409] sensor azimuth values
33
34 !Input/Output Parameters:
35 smat[3] [3] sensor orientation matrix
36 !Revision History:
37 $LOG: geonav.c,v $
38 Revision 01.01 1993/10/12 10:12:28
39 Z. GREEN (zgreen@harp.gsfc.nasa.gov)
40 Initial delivery of software. Modified to comply with ESDIS
41 standards. It was a breeze.
42
43 Revision 01.00 1993/04/29 17:12:28
44 A. SMITH (asmith@harp.gsfc.nasa.gov)
45 Initial debugged version, based on original FORTRAN 77
46 subroutine developed in 1983 by C. ADAMS of the TELLUS
47 project.
48
49 !Team-unique Header:
50 <Science team puts any thing they want in this portion of prolog>
51 !END***
*/
<code follows here>

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 6-3 October 1996

April 21, 1997 Attachment

The following notes describe how to use the header block, using the above example as a
reference.

Line 00: Name of main procedure, include file or subroutine/ procedure/function. If this is
not the main procedure or an include file, it should contain the function statement.

Line 04: Start of prolog. Initial marker can take the following values:

!FXY - contains FORTRAN XY (XY = 77 or 90) executable statements

!C - contains C executable statements

--!ADA - contains Ada executable statements

!FXY-INC - FORTRAN XY (XY = 77 or 90) include file

!C-INC - C include file

Alternately, the prolog may use a language-independent set of markers. These

include:

!PROLOG

!PROLOG-INC

Line 06: A concise but complete summary of the overall function of the module. Any
references for methods and/or algorithms should be included. Use as many lines as
necessary.

Line 18: Header for input. The word "parameters" in the example is a place holder; a
choice of the words "parameters", "variables", or "arguments" may be used or the word
may be omitted.

Line 19-24: Input parameters, arguments, or variables (not global variables) in the order
they are presented to the module with a short 1-2 line description of the parameter (and its
units where appropriate). Global variables should be described in the module in which
they are declared (i.e., only once).

Line 26: Header for output. The word "parameters" in the example is a place holder; a
choice of the words "parameters", "variables", or "arguments" may be used or the word
may be omitted.

Line 27-32: Output parameters, arguments, or variables (not global variables) in the order
they are contained in the function statement. Global variables should be described in the
module in which they are declared (i.e., only once). Same format as for input parameters.

Line 34: Header for input/output. The words "!Input/Output" are mandatory, if there are
any such parameters. The word "parameters" in the example is a place holder; a choice of
the words "parameters", "variables", or "arguments" may be used or the word may be
omitted.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 6-4 October 1996

April 21, 1997 Attachment

Line 35: Parameters, arguments, or variables that serve both as input parameters and as
output parameters (not global variables) in the order they are contained in the function
statement. Global variables should be described in the module in which they are declared
(i.e., only once). Same format as for input parameters. The automated I&T tools will
allow this part of the header to be omitted.

Line 36: Start of Revision History Log.

Line 37: If you are using an automated tool for revision control, you should insert any
statements required immediately after the Modification History Log Header.

Line 38-47: Each revision shall contain as a minimum the revision number, date, and a
short description of ALL the changes made. For larger teams, the person's name and their
email address are recommended. The first entry shall include the original author and date
of the code. Revisions shall be ordered with the latest first. [Note: this revision
information can be supplemented with more detailed comments in the code referencing the
revision number.]

Any revision numbering system relevant to your site and configuration control mechanism
may be used but the "nn.mm" format is recommended, where "mm" is updated each time a
change is made to the module and "nn" is updated when the function of the module
changes or the algorithm/method is changed. [Note: The release number for the data
production software is not related to the revision numbers on individual modules - the
release number scheme should be determined by the development team. The date
associated with a release is more meaningful than a release number to those outside the
development team.]

Line 49: Start of Team-unique Header.

Line 50: Each team may design it's own header section(s). There may be more than one of
these, mixed in with the mandatory header sections of the prologue. The automated I&T
tools will ignore this part of the header.

Line 51: End of source code prolog.

General Notes:

1. The marker may have the format "!marker" or "!marker". The marker is case insensitive
(e.g., Marker, marker, and MARKER are the same).

2. A team-unique marker does not have to have the phrase "team unique" in the marker.

3. An Ada prolog starts with "--!" rather than "!".

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 7-1 October 1996

April 21, 1997 Attachment

7. SCRIPT LANGUAGE STANDARD

 7.1 INTENT

The intent of this standard is to facilitate software portability and to control costs at the
DAAC.

7.2 STANDARDS

7.2.1 Shell Languages

Command language code delivered to the DAACs as part of the science data production
software shall be written using one or more of the following script languages.

a.) csh,

b.) ksh,

c.) perl,

d.) POSIX-compatible shell language,

e.) bourne shell.

Adherence to these standards is mandatory for script command languages that are used to
generate the command language portion of the science data production software delivered
to the DAACs.

The POSIX standard is published in IEEE Std 1003.2-1992.

7.2.2 Shell Names

The following case-independent filename extensions shall be used for all science software
script files delivered to the DAAC as part of the science software delivery:

 a.) c script .csh

 b.) korn script .ksh

 c.) perl script .pl or .perl

 d.) bourne script .sh

7.3 GUIDELINES

7.3.1 Minimize Number of Script Languages

Command language code delivered to the DAACs as part of the science data production
software from a science team should be written using the smallest possible number of
script languages.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A 7-2 October 1996

April 21, 1997 Attachment

7.3.2 Use Efficient Mixture of Compiled and Interpreted Programming Languages

The use of compiled programming language should be maximized and the use of
interpreted script command language should be minimized, in developing science data
production software for delivery to the DAACs. The rationale for this guideline is
efficiency of software execution and adherence to standards for portability. Compiled code
executes more efficiently than interpreted code. There are formal national standards for the
approved compiled programming languages while there is only one formal national
standard, POSIX, for a script language.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-1 October 1996

April 21, 1997 Attachment

APPENDIX A. ESDIS POLICY REGARDING PROHIBITED FUNCTIONS IN
SCIENCE DATA PRODUCTION SOFTWARE

A.1 GENERAL PRINCIPLES

The general guiding principles behind the prohibited functions will apply to both scripts
and compiled code.

A.1.1 Avoid Interactivity

Since a running Product Generation Executive (PGE) is not connected to any terminal
device (screen, keyboard, mouse, etc.), the PGE should not invoke any function, routine,
or utility that requires such a device. The PGEs: 1) may not write to standard output
(stdout) or standard error (stderr), or read from standard input (stdin); 2) may not attempt
to display anything to the screen (GUIs, prompts, messages); and 3) may not attempt to
read anything from an input device such as a keyboard or mouse. This necessarily means
that a PGE cannot be directly interactive with a user or operator.

Examples: 1) do not use I/O streams stdin, stdout, or stderr in C; 2) do not use file handles
STDIN, STDOUT, or STDERR in Perl; 3) do not write to unit 6 or *, or read from unit 5
or *, in FORTRAN 77 or Fortran 90 and 4) do not use unredirected or unpiped stdin,
stdout, or stderr in shell scripts.

A.1.2 Use Process Control Files

All I/O in a PGE must be through the use of files which are defined in the Process Control
File (PCF). This applies to both compiled code and to scripts. The SDP Toolkit provides
tools for both.

A.1.3 No Direct Control of Files

PGEs must not attempt to circumvent the SDP Toolkit in order to manage files or file
systems directly.

Examples: Do not use chdir(), mkdir(), mv, cd, rm, rmdir, chmod, chown

A.1.4 No Direct Control of Processes

PGEs must not attempt to circumvent the SDP Toolkit in order to manage or control
processes.

Examples: Do not use kill, su, wait(), nice, sleep, umask()

A.1.5 No Direct Control of Network

PGEs must not attempt to initiate network connections or transfers directly.

Examples: Do not use ftp, telnet, rlogin, lp, socket(), RCP

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-2 October 1996

April 21, 1997 Attachment

A.1.6 No Direct Control of Shell

PGEs must not interfere in or otherwise thwart the shell environment in which the PGEs
are running. Environment variables used by the Toolkit (e.g. PGSHOME, PGSBIN,
PGSMSG, PGSLIB, HDFHOME, HDFINC, etc.) should not be redefined. The
environment variables that are typical in a user shell (e.g. USER, PATH, SHELL, path,
HOSTNAME, MACHINETYPE, SHLVL, PWD, DISPLAY, TERM, etc.) should not be
redefined.

A.2 LANGUAGE-SPECIFIC LISTS

For each language, the prohibited functions include but are not limited to the items in the
following lists. It is impossible to list all possible functions, routines, utilities, etc. that
someday may present a problem to the ECS.

A.2.1 C Language Prohibited Functions

abort()
access()
alarm()
Any use of file stream stdin
Any use of file stream stdout
Any use of file stream stderr
atexit()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
clearerr()
close()
closedir()
creat()
ctermid()
dup()
dup2()
exec()
_exit()
fclose()
fcntl()
fdopen()
fileno()

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-3 October 1996

April 21, 1997 Attachment

fopen()
fork()
fpathconf()
freopen()
fstat()
getchar()
getcwd()
getegid()
geteuid()
getgid()
getgrgid()
getgrnam()
getgroups()
getlogin()
getpgrp()
getpid()
getppid()
getpwnam()
getpwuid()
gets()
getuid()
isatty()
kill()
localeconv()
link()
lseek()
mkdir()
mkfifo()
opendir()
open()
pathconf()
pause()
pipe()
printf()
putchar()
puts()
read()
readdir()
remove()
rename()
rewind()
rewinddir()

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-4 October 1996

April 21, 1997 Attachment

rmdir()
scanf()
setbuf()
setgid()
setgrgid()
setlocale()
setpgid()
setsid()
setuid()
sig...()
sleep()
stat()
system()
tc...()
tmpfile()
tmpnam()
ttyname()
uname()
unlink()
umask()
utime()
vprintf()
uname()
wait()
waitpid()
write()

A.2.2 FORTRAN (77 & 90) Language Prohibited Functions.

Any use of output to unit 6 or *
Any use of input from unit 5 or *
CLOSE()
OPEN()
PRINT * ...
PXFACCESS()
PXFALARM()
PXFCFGETISPEED()
PXFCFGETOSPEED()
PXFCFSETISPEED()
PXFCFSETOSPEED()
PXFCHMOD()
PXFCHOWN()

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-5 October 1996

April 21, 1997 Attachment

PXFCLOSE()
PXFCLOSEDIR()
PXFCNTL()
PXFCREAT()
PXFCTERMID()
PXFDUP()
PXFDUP2()
PXFCHDIR()
PXFEXEC...()
PXFEXIT()
PXFFASTEXIT()
PXFFCNTL()
PXFFDOPEN()
PXFFILENO()
PXFFORK()
PXFFPATHCONF()
PXFFSTAT()
PXFGETCWD()
PXFGETEGID()
PXFGETEUID()
PXFGETGID()
PXFGETGRGID()
PXFGETGRNAM()
PXFGETGROUPS()
PXFGETLOGIN()
PXFGETPGRP()
PXFGETPID()
PXFGETPPID()
PXFGETPWNAM()
PXFGETPWUID()
PXFGETUID()
PXFIS...()
PXFISATTY()
PXFKILL()
PXFLINK()
PXFLSEEK()
PXFMKDIR()
PXFMKFIFO()
PXFOPEN()
PXFOPENDIR()
PXFPAUSE()
PXFPATHCONF()

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-6 October 1996

April 21, 1997 Attachment

PXFPIPE()
PXFPOSIXIO()
PXFREAD()
PXFREADDIR()
PXFRENAME()
PXFRMDIR()
PXFREWINDDIR()
PXFSETGID()
PXFSETPGID()
PXFSETSID()
PXFSETUID()
PXFSIG...()
PXFSLEEP()
PXFSTAT()
PXFTC...()
PXFTTYNAME()
PXFUMASK()
PXFUNAME()
PXFUNLINK()
PXFUTIME()
PXFWAIT()
PXFWAITPID()
PXFWRITE()
READ * ...
READ(*,...)
READ(5,...)
WRITE(*,...)
WRITE(6,...)

A.2.3 Bourne, C, Korn, and Perl Shell Prohibited Functions and Utilities.

Any use of standard input (stdin)
Any use of standard output (stdout)
Any use of standard error (stderr)
at, atq, atrm
cd
chgrp
chmod
chown
cp
find
ftp

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-7 October 1996

April 21, 1997 Attachment

kill
ln
lp, lpr, lpstat
mail (and any related functions)
mkdir
nice
printf
rcp
read
rlogin
rm
rmdir
rsh
script
sleep
su
telnet
touch
umask
write

A.2.4 Perl-Specific Prohibited Functions.

accept()
alarm()
Any use of file handle STDIN
Any use of file handle STDOUT
Any use of file handle STDERR
bind()
chdir()
closedir()
connect()
chmod()
chown()
chroot()
dbmclose()
dbmopen()
die
dump()
exec()
fcntl()
fileno()

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-8 October 1996

April 21, 1997 Attachment

flock()
fork()
getgrgid()
getlogin()
getpeername()
getpgrp()
getppid()
getpriority()
getpwuid()
getsockname()
getsockopt()
link()
listen()
kill()
mkdir()
msgctl()
msgget()
msgsnd()
opendir()
readdir()
readlink()
recv()
rename()
rewinddir()
rmdir()
seekdir()
setpgrp()
setpriority()
setsockopt()
semctl()
semget()
semop()
send()
shmctl()
shmget()
shmread()
shmwrite()
shutdown()
sleep()
socket()
socketpair()
symlink()

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-9 October 1996

April 21, 1997 Attachment

syscall()
system()
telldir()
unlink()
umask()
utime()
wait()
waitpid()
warn()

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A A-10 October 1996

April 21, 1997 Attachment

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A B-1 October 1996

April 21, 1997 Attachment

APPENDIX B. ESDIS POLICY FOR SOFTWARE STANDARDS CHANGES AND
WAIVERS

B.1 SCOPE

This discussion is limited to the ESDIS Software Standards and Guidelines for Science
Team SCFs and for Science team software targeted for the DAAC. These standards are
documented in this document. This policy does not apply to any documents that describe
good programming practices (corollary information) or other recommended practices.
However, guidelines (including standards) in this document are controlled by the ESDIS
Project Configuration Control Board (CCB).

There are two policy categories when considering changes or exceptions to the ESDIS
Standards. These categories are: permanent changes to the Standards, and individual
exceptions to the Standards via waivers. These are discussed separately.

B.1.1 Standards Changes

These may be suggested, not requested, (i.e. no formal response to the originating party is
required) by any involved or associated party. The Standards Committee (science team,
DAAC, ECS contractor, and ESDIS personnel) will: 1) hold a caucus to discuss the
suggestion; 2) write up the changes to the Standards Document; 3) circulate these changes
within the ESDIS Standards Committee, for concurrence; and then 4) transfer the revised
document recommendation to the formal ESDIS CCB for final approval.

All CCB approved changes to the Standards Document will then be broadcast to EOS
Instrument, Interdisciplinary, and DAAC teams. Changes to the Standards Document will
be made by the ESDIS Project Configuration Management Officer using change bars and
revision markings within the body of the Standards Document. Reasons for Standards
changes will be disseminated to the EOS teams, but will not be included in the Standards
Document.

The rationale for Standards and/or Guidelines changes can include: code maintenance,
portability, reusability, ease of creation, heritage considerations, and common coding
practices.

The following definitions have been used for the above terms:

a.) Maintenance: long term viability of the code (20 years). This applies to code
headers, documentation, understandability, modularity, etc.

b.) Portability: ease of moving code to new platforms. This applies to the
compatibility of languages and coding techniques across all computer
architectures.

c.) Reusability: the ability of others to use and understand the code as written. This
applies more to the calling sequence, parameter passing, and utility and library
aspects of the code. This term also considers the quality of the code
documentation.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A B-2 October 1996

April 21, 1997 Attachment

d.) Ease of creation: industry accepted coding practices including macros, make files,
handling of machine dependencies, debugging, profiling, and other integrated
development environment (IDE) aspects.

e.) Heritage considerations: allowing old coding practices in previously written code
that has been thoroughly debugged, exercised, in wide usage, and would create
redundant work to re-invent.

f.) Common coding practices: techniques that the programming community as a
whole utilizes and are therefore assumed to be understandable by all
programmers.

Note that heritage code will be brought up to standards before delivery to the DAAC.
Exceptions to this policy will be covered as temporary waivers to the Standards.

B.1.2 Individual Waivers to the Standard

Waivers are defined to be temporary exceptions to the Standards Document and are an
agreement between ESDIS and an individual. Depending upon the nature of the waiver, it
may apply to the entire EOSDIS community. All waivers will have an expiration date.
Criteria for granting or renewing a waiver include feasibility in the ECS environment and
cost impact.

The procedure for waivers is for the request to be submitted to an ESDIS Science Software
Manager (SSM). The SSM will acknowledge the request and give an expected time frame
for an official response to the waiver request. The ESDIS Standards Committee will
convene to create an unofficial acknowledgment to the requester indicating that the request
is reasonable or not, pro's and con's discussing the merits of the request, and a proposed
date at which the response will be officially approved. This is necessary to give a timely
response to the requester, who can then proceed with accommodating the proposed waiver
results.

All waivers will need approval of the ESDIS Standards Committee and, if appropriate, of
the ESDIS Data Processing Manager before becoming official, but will not need ESDIS
CCB approval.

A waiver rejection appeal process can be initiated by the involvement of a third party, at the
discretion of the ESDIS Data Processing Manager, to further champion the waiver. Third
parties may be from any of the ESDIS associated entities, such as a DAAC, ECS
contractor, instrument team, ECS component (SDPS, CSMS, etc.), spacecraft platform
developer, or EOSDIS working group. Waiver appeal approval will be determined by a
consensus among the instrument teams and DAAC representatives, heavily weighted with
the opinion of the ESDIS Data Processing Manager.

Criteria for waivers will emphasize the short duration for which a waiver is to be granted.
The granting or renewal of a waiver would cover only specified deliveries with the
requirement that the code would be brought into standards compliance by a specified date
or milestone.

Waivers are renewable as long as the instrument team continues to need the waiver and the
DAAC can continue to support the exception to the standards.

A list of the current waivers may be obtained from an ESDIS SSM.

MODIS Software Development Standards and Guidelines SDST-022C

423-16-01

Revision A AB-1 October 1996

April 21, 1997 Attachment

ACRONYMS AND ABBREVIATIONS

API Application Program Interface

CCB Configuration Control Board

DAAC Distributed Active Archive Center

DPFT Data Processing Focus Team

ECS EOSDIS Core System

EOS Earth Observing System

EOSDIS EOS Data and Information System

ESDIS Earth Science Data and Information System

IDE Integrated Development Environment

I/O Input/Output

PCF Process Control File

PGE Product Generation Executive

SCF Science Computing Facility

SDP Science Data Production

SSI&T Science Software Integration and Test

SSM Science Software Manager

